
Random Convex Approximations of

Ambiguous Chance Constrained Programs

Shih-Hao Tseng, (pronounced as “She-How Zen”)

joint work with Eilyan Bitar and Kevin Tang

December 14, 2016

School of Electrical and Computer Engineering, Cornell University



Chance Constrained Program (CCP)

P

1

Goal: Find a solution which is feasible

with high probability.

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

• δ ∈ ∆ ⊆ Rm is an uncertain parameter (e.g. wind, solar);

• x ∈ X ⊆ Rn is the decision variable (e.g. output power);

• ε ∈ [0, 1] is the acceptable constraint violation probability.

Presenter: Shih-Hao Tseng

Random Convex Approximations of Ambiguous Chance Constrained Programs
1



Chance Constrained Program (CCP)

P

1

Goal: Find a solution which is feasible

with high probability.

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

Variables:

• δ ∈ ∆ ⊆ Rm is an uncertain parameter (e.g. wind, solar);

• x ∈ X ⊆ Rn is the decision variable (e.g. output power);

• ε ∈ [0, 1] is the acceptable constraint violation probability.

Presenter: Shih-Hao Tseng

Random Convex Approximations of Ambiguous Chance Constrained Programs
1



Chance Constrained Program (CCP)

P

1

Goal: Find a solution which is feasible

with high probability.

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

Variables:

• δ ∈ ∆ ⊆ Rm is an uncertain parameter (e.g. wind, solar);

• x ∈ X ⊆ Rn is the decision variable (e.g. output power);

• ε ∈ [0, 1] is the acceptable constraint violation probability.

Presenter: Shih-Hao Tseng

Random Convex Approximations of Ambiguous Chance Constrained Programs
1



Chance Constrained Program (CCP)

P

1

Goal: Find a solution which is feasible

with high probability.

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

Variables:

• δ ∈ ∆ ⊆ Rm is an uncertain parameter (e.g. wind, solar);

• x ∈ X ⊆ Rn is the decision variable (e.g. output power);

• ε ∈ [0, 1] is the acceptable constraint violation probability.

Presenter: Shih-Hao Tseng

Random Convex Approximations of Ambiguous Chance Constrained Programs
1



Chance Constrained Program (CCP)

P

1

Goal: Find a solution which is feasible

with high probability.

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

Assumptions: Knowing the following sets and function

• The uncertainty set ∆;

• X is closed and convex;

• f : X ×∆→ R is closed and convex in x for each δ ∈ ∆.
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Chance Constrained Program (CCP)

P

1

Goal: Find a solution which is feasible

with high probability.

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

Assumptions:

• δ is a random variable distributed over ∆ according to P.
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Chance Constrained Program (CCP)

P

1

Goal: Find a solution which is feasible

with high probability.

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

Shortcoming:

• Non-convexity of the feasible region ⇒ hard to solve.
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Chance Constrained Program (CCP)

P

1

Goal: Find a solution which is feasible

with high probability.

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

Shortcoming:

• Non-convexity of the feasible region ⇒ hard to solve.

• Convex inner approximation of the feasible region for some

special cases (Nemirovski and Shapiro, 2006).

A. Nemirovski and A. Shapiro, “Convex Approximations of Chance Constrained Programs,” 2006. 4



Approximation via Sampling

P

1

Question: How to approximate CCP?

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.
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Approximation via Sampling

P

11

Question: How to approximate CCP?

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

• Suppose we are able to procure N IID samples

δ1, . . . , δN ∼ P

from P. How can we use these samples to approximate CCP?
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Approximation via Sampling

P

11

Question: How to approximate CCP with

the IID samples?

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

• The basic idea is to replace the chance constraint with other

constraints.
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Sample Average Approximation (SAA)

P

11

Question: How to approximate CCP with

the IID samples?

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

• E.g., using sample average approximation (SAA)

1

N

N∑
i=1

1 {f(x, δi) ≤ 0} ≥ 1− ε

gives a mixed integer program (Ahmed and Shapiro, 2008).

S. Ahmed and A. Shapiro, “Solving Chance-Constrained Stochastic Programs via Sampling and Integer Programming,”

2008.
7



Sampled Convex Program (SCP)

P

11

Question: How to approximate CCP with

the IID samples?

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.

• Another way is to enforce the “sampled” constraints

f(x, δi) ≤ 0, i = 1, . . . , N,

which results in a sampled convex program (SCP).
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Sampled Convex Program (SCP)

P

11

minimize c>x

subject to x ∈ X
f(x, δi) ≤ 0, i = 1, . . . , N.

• The computational complexity is decided by f .

• Let x0∗
N be the optimal solution to the SCP.

lim
N→∞

P
{
f(x0∗

N , δ) ≤ 0
}
→ 1.
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Sampled Convex Program (SCP)

P

11

Question: How large N should be s.t. x0∗
N

is feasible to CCP with high probability?

minimize c>x

subject to x ∈ X
f(x, δi) ≤ 0, i = 1, . . . , N.

Properties:

• The computational complexity is decided by f .

• Let x0∗
N be the optimal solution to the SCP.

lim
N→∞

P
{
f(x0∗

N , δ) ≤ 0
}
→ 1.
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Violation Probability

• Let the feasible set of CCP be

X 0
ε = {x ∈ X : P {f(x, δ) ≤ 0} ≥ 1− ε} .
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Violation Probability

• Let the feasible set of CCP be

X 0
ε = {x ∈ X : P {f(x, δ) ≤ 0} ≥ 1− ε} .

Question: How many samples are needed so that x0∗
N ∈ X 0

ε with

probability at least 1− β?

PN
{
x0∗
N ∈ X 0

ε

}
≥ 1− β.
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Violation Probability

• Let the feasible set of CCP be

X 0
ε = {x ∈ X : P {f(x, δ) ≤ 0} ≥ 1− ε} .

Question: How many samples are needed so that x0∗
N ∈ X 0

ε with

probability at least 1− β?

PN
{
x0∗
N ∈ X 0

ε

}
≥ 1− β.

• How to bound the violation probability by β?

PN
{
x0∗
N /∈ X 0

ε

}
≤ β.
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Sampled Convex Program (SCP)

Theorem (Campi and Garatti, 2008; Calafiore, 2010)

PN
{
x0∗
N /∈ X 0

ε

}
≤ Φ(ε),

where

Φ(ε) :=


1, ε ∈ (−∞, 0],∑n−1

i=1

(
N
i

)
εi(1− ε)N−i, ε ∈ (0, 1],

0, ε ∈ (1,∞).

M. C. Campi and S. Garatti, “The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs,” 2008.

G. C. Calafiore, “Random Convex Programs,” 2010.
11



Sampled Convex Program (SCP)

Theorem (Campi and Garatti, 2008; Calafiore, 2010)

PN
{
x0∗
N /∈ X 0

ε

}
≤ Φ(ε).

• We can define the sample size requirement

N(ε, β) := min {N ∈ N : Φ(ε) ≤ β} .

M. C. Campi and S. Garatti, “The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs,” 2008.

G. C. Calafiore, “Random Convex Programs,” 2010.
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Sampled Convex Program (SCP)

Theorem (Campi and Garatti, 2008; Calafiore, 2010)

PN
{
x0∗
N /∈ X 0

ε

}
≤ Φ(ε).

Corollary (Campi and Garatti, 2008; Calafiore, 2010)

N(ε, β) ≤ 2

ε

(
ln

1

β
+ n

)

M. C. Campi and S. Garatti, “The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs,” 2008.

G. C. Calafiore, “Random Convex Programs,” 2010.
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Sampled Convex Program (SCP)

Theorem (Campi and Garatti, 2008; Calafiore, 2010)

PN
{
x0∗
N /∈ X 0

ε

}
≤ Φ(ε).

Corollary (Campi and Garatti, 2008; Calafiore, 2010)

N(ε, β) ≤ 2

ε

(
ln

1

β
+ n

)
• Notice that the results hold for “any” distribution P.

M. C. Campi and S. Garatti, “The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs,” 2008.

G. C. Calafiore, “Random Convex Programs,” 2010.
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Sampling a Misspecified Model

P

1

Issue: In practice, one might have limited

access to IID samples from P.
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Sampling a Misspecified Model

P
P̂

11

Issue: In practice, one might have limited

access to IID samples from P.

Question: How “misspecified” is the

model P̂?

(How ambiguous is our information of P?)

• Sampling efficiently from a (misspecified) model P̂ 6= P.

δ̂1, . . . , δ̂N ∼ P̂
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Characterizing Distributional Ambiguity

P

P

1

Approach: Let the ambiguity set P be the

set where P lies in.

Question: How to specify P?
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Characterizing Distributional Ambiguity

P

P

1

Approach: Let the ambiguity set P be the

set where P lies in.

Question: How to specify P?

• Moment based specifications (e.g., mean and variance)

(Calafiore and El Ghaoui, 2006).

G. C. Calafiore and L. El Ghaoui, “On Distributionally Robust Chance-Constrained Linear Programs,” 2006. 14



Characterizing Distributional Ambiguity

P
r

P

P̂

1

Approach: Let the ambiguity set P be the

set where P lies in.

Question: How to specify P?

• Alternatively, we define the P to be

ρ(P, P̂) ≤ r,

where ρ is a distance/metric over probability measures on ∆.
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Characterizing Distributional Ambiguity

P
r

P

P̂

1

Question: How to deal with the

ambiguity?

Chance constrained program (CCP):

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε.
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Ambiguous Chance Constrained Program (ACCP)

P
r

P

P̂

1

Question: How to deal with the

ambiguity?

Approach: Enforce the chance constraint

for every single elements in P.

Ambiguous chance constrained program (ACCP):

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε, ∀ P ∈ P.
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Ambiguous Chance Constrained Program (ACCP)

PP
P̂

1

Question: How to deal with the

ambiguity?

Approach: Enforce the chance constraint

for every single elements in P.

• When r = 0, we recover the

ambiguity-free formulation.

Ambiguous chance constrained program (ACCP):

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε, ∀ P ∈ P.
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Approximating ACCP via Sampling

P
P̂

11

Question: How to approximate ACCP

with the IID samples from P̂?
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Approximating ACCP via Sampling

P
P̂

11

Question: How to approximate ACCP

with the IID samples from P̂?

Idea: For CCP, we have SCP.

Sampled convex program (SCP):

minimize c>x

subject to x ∈ X
f(x, δi) ≤ 0, i = 1, . . . , N.
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Robust Sampled Convex Program (RSCP)

P
P̂

11

Question: How to approximate ACCP

with the IID samples from P̂?

Approach: When ρ is the Prokhorov

metric, robust sampled convex program

(RSCP) can approximate ACCP (Erdoğan

and Iyengar, 2006).

Robust sampled convex program (RSCP):

minimize c>x

subject to x ∈ X
f(x, z) ≤ 0, ∀ z ∈

N⋃
i=1

Br(δ̂i) ∩∆.

E. Erdoğan and G. Iyengar, “Ambiguous Chance Constrained Problems and Robust Optimization,” 2006. 16



Prokhorov Metric

Definition

Given two probability measures P, Q ∈M(∆), the Prokhorov

metric is defined as

ρp(P,Q) := inf{γ > 0 : P{A} ≤ Q{Aγ}+ γ, ∀ A ∈ B(∆)},

where Aγ := {y ∈ ∆ : infz∈A ‖y − z‖ < γ} denotes the

γ-neighborhood of the set A. Here, ‖ · ‖ is a suitable norm on the

space ∆.
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Prokhorov Metric

Definition

Given two probability measures P, Q ∈M(∆), the Prokhorov

metric is defined as

ρp(P,Q) := inf{γ > 0 : P{A} ≤ Q{Aγ}+ γ, ∀ A ∈ B(∆)},

where Aγ := {y ∈ ∆ : infz∈A ‖y − z‖ < γ} denotes the

γ-neighborhood of the set A. Here, ‖ · ‖ is a suitable norm on the

space ∆.

• Evaluating Prokhorov metric is not trivial.

• However, it can be related to other metrics through

inequalities (Gibbs and Su, 2002).

A. L. Gibbs and F. E. Su, “On Choosing and Bounding Probability Metrics,” 2002. 18



Violation Probability

• Similarly, we can define the feasible set of ACCP

X rε :=

{
x ∈ X : inf

P∈P
P {f(x, δ) ≤ 0} ≥ 1− ε

}
.

• Let the optimal solution to RSCP be xr∗N , the violation

probability should be bounded by β

P̂N {xr∗N /∈ X rε } ≤ β.

• Can we find an upper bound on the violation probability?
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Robust Sampled Convex Program (RSCP)

Theorem (Erdoğan and Iyengar, 2006)

P̂N {xr∗N /∈ X rε } ≤
(
eN

n

)n
e−(ε−r)(N−n).

• The sample size requirement:

N(ε− r, β) := min

{
N ∈ N :

(
eN

n

)n
e−(ε−r)(N−n) ≤ β

}
.

E. Erdoğan and G. Iyengar, “Ambiguous Chance Constrained Problems and Robust Optimization,” 2006. 20



Robust Sampled Convex Program (RSCP)

Theorem (Erdoğan and Iyengar, 2006)

P̂N {xr∗N /∈ X rε } ≤
(
eN

n

)n
e−(ε−r)(N−n).

• The sample size requirement:

N(ε− r, β) := min

{
N ∈ N :

(
eN

n

)n
e−(ε−r)(N−n) ≤ β

}
.

Theorem (Tseng, Bitar and Tang, 2016)

P̂N {xr∗N /∈ X rε } ≤ Φ(ε− r)

• The sample size requirement for our new bound is N(ε− r, β).
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Tighter Bound for RSCP Approximation to ACCP under ρp

• Our new bound on the violation probability improves upon the

existing bound,
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which implies smaller sample size requirement, i.e.,

N(ε− r, β) ≤ N(ε− r, β).
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Tighter Bound for RSCP Approximation to ACCP under ρp

• Fixing n = 10, r = 0.1 and β = 10−5, we compare the sample

size requirement implied by our new bound N(ε− r, β) and

the old bound N(ε− r, β) under different ε.

ε 0.15 0.125 0.11 0.105 0.1025 0.101

N(ε− r, β) 581 1171 2942 5895 11799 29513

N(ε− r, β) 1434 3175 8960 19460 41986 115027
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The Idea

• By defining

g(x, δ̂) = sup
z∈Br(δ̂)∩∆

f(x, z),

we can transform RSCP to be in the form of SCP

minimize c>x

subject to x ∈ X
f(x, z) ≤ 0, ∀ z ∈

N⋃
i=1

Br(δ̂i) ∩∆.

Optimal solution: xr∗N ; ACCP feasible set: X r(·).
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The Idea

• By defining

g(x, δ̂) = sup
z∈Br(δ̂)∩∆

f(x, z),

we can transform RSCP to be in the form of SCP

minimize c>x

subject to x ∈ X
g(x, δ̂i) ≤ 0, i = 1, . . . , N.

Optimal solution: y0∗
N = xr∗N ; CCP feasible set: Y0

(·).
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The Idea

• By defining

g(x, δ̂) = sup
z∈Br(δ̂)∩∆

f(x, z),

we can transform RSCP to be in the form of SCP.

• By the definition of Prokhorov metric,

xr∗N /∈ X rε implies y0∗
N /∈ Y0

ε−r.

• Therefore

P̂N {xr∗N /∈ X rε } ≤ P̂N
{
y0∗
N /∈ Y0

ε−r
}
≤ Φ(ε− r).
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Approximating ACCP via Sampling

P
P̂

11

Question: Do we really need to use

RSCP?
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performance guarantee?

Sampled convex program (SCP):
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RSCP? Can SCP approximate ACCP with

performance guarantee?

Answer: Yes, we can approximate ACCP

by SCP.

Sampled convex program (SCP):

minimize c>x

subject to x ∈ X
f(x, δ̂i) ≤ 0, i = 1, . . . , N.
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Perturbed Risk Level

• The key idea is the perturbed risk level.

Definition

The perturbed risk level νrε ∈ [0, 1] associated with the ambiguity

set P is defined as

νrε := sup{α : P̂ {A} ≤ α⇒ sup
P∈P

P {A} ≤ ε, ∀A ∈ B(∆)},

where B(∆) is the Borel σ-algebra on ∆. We define νrε = 0 if the

supremum does not exist.
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The Idea

• From the definition of the perturbed risk level,

x0∗
N /∈ X rε implies x0∗

N /∈ X 0
νrε
.

• We know the violation probability bound for SCP

P̂N
{
x0∗
N /∈ X 0

νrε

}
≤ Φ(νrε ).

• Therefore

P̂N
{
x0∗
N /∈ X rε

}
≤ P̂N

{
x0∗
N /∈ X 0

νrε

}
≤ Φ(νrε ).
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SCP Approximation to ACCP

Lemma (Tseng, Bitar and Tang, 2016)

P̂N
{
x0∗
N /∈ X rε

}
≤ Φ(νrε ).

Moreover, it holds that Φ(νrε ) ≤ Φ(ν) for all ν ≤ νrε .
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SCP Approximation to ACCP

Lemma (Tseng, Bitar and Tang, 2016)

P̂N
{
x0∗
N /∈ X rε

}
≤ Φ(νrε ).

Moreover, it holds that Φ(νrε ) ≤ Φ(ν) for all ν ≤ νrε .

• As such, a lower bound on νrε leads to an upper bound on the

violation probability.
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SCP Approximation to ACCP

• We then derive the lower bounds for some probability metrics.

Proposition (Tseng, Bitar and Tang, 2016)

Fix ε ∈ [0, 1] and r ≥ 0. For each of the following distance

functions, the corresponding perturbed risk level νrε satisfies the

lower bound:

(a) Total variation metric, ρtv: νrε ≥ ε− r.

(b) Hellinger metric, ρh: νrε ≥ max (
√
ε− r, 0)

2
.

(c) Relative entropy distance, ρe: νrε ≥ sup
λ>0

e−r(λ+1)ε−1
λ .

(d) χ2-distance, ρχ2 : νrε ≥ ε+ r
2 −

√
rε+ r2

4 .
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SCP Approximation to ACCP
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Figure 1: Plot of lower bound on the perturbed risk level νrε versus r for

ε = 0.2. Each curve corresponds to a different distance function.
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Sample Size Requirement using SCP

• Fixing n = 10, r = 0.1 and β = 10−5, we compare the sample

size requirement implied by the total variation metric (Ntv),

Hellinger metric (Nh), relative entropy distance (Ne), and

χ2-distance (Nχ2). Let N0 = N(ε, β).

ε 0.2 0.15 0.125 0.11 0.105 0.1025 0.101

Ntv 285 581 1171 2942 5895 11799 29513

Nh 235 348 449 540 578 599 612

Ne 444 762 1098 1438 1591 1678 1734

Nχ2 285 426 552 664 711 736 752

N0 137 187 226 258 271 278 282
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Summary

Problem Method Violation Probability Bound

CCP SCP PN
{
x0∗N /∈ X 0

ε

}
≤ Φ(ε)

ACCP

(Prokhorov)
RSCP P̂N {xr∗N /∈ X rε } ≤ Φ(ε− r)

ACCP SCP P̂N
{
x0∗N /∈ X rε

}
≤ Φ(νrε )
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Summary

Problem Method Sample Complexity

CCP SCP N(ε, β) ≤ 2

ε

(
ln

1

β
+ n

)
ACCP

(Prokhorov)
RSCP N(ε− r, β) ≤ 2

ε− r

(
ln

1

β
+ n

)

ACCP SCP N(νrε , β) ≤ 2

νrε

(
ln

1

β
+ n

)
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Conclusion

• We improve the existing bound on the violation probability of

RSCP approximation to ACCP under Prokhorov metric. The

new bound recovers the ambiguity-free bound when the radius

of the ambiguity set is zero.

• Our results serve as tools for data-driven optimization. When

limited IID samples from the true distribution is available, our

results allow one to generate IID samples from (potentially)

misspecified model (“No model is perfect”) with bounds on

the violation probability and the sample complexity.

Presenter: Shih-Hao Tseng

Random Convex Approximations of Ambiguous Chance Constrained Programs
33



Future Directions

• Construction of ambiguity set P using limited samples from P.

• Techniques for parallelization.

• Probabilistic bounds on the optimality gap.

• Generalizing to non-convex f (e.g., indefinite quadratic).
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Questions & Answers
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