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Abstract—Several cloud or data-parallel applications involve
coflow scheduling, which controls a set of flows under the
same semantic meaning with a common goal. Due to such
common goal, optimizing each flow using the standard flow
scheduling approaches does not necessarily lead to good coflow
performance. Therefore, numerous methods and systems are
proposed to focus on coflow scheduling problem.

However, the current coflow scheduling designs are based on
simple heuristics or observations. The absence of the optimum
makes it hard to adjudge their absolute effectiveness. In this
work, we derive the optimal solution to the coflow deadline
satisfaction problem (CDS), which maximizes the number of
satisfied coflow deadlines, from a mixed integer linear program
formulation.

We further show that CDS is not only NP-hard to solve but
also intractable to approximate with a fixed approximation ratio
(unless P=NP). As such, the use of heuristics is justified. We then
develop optimization-based methods to approach the problem
offline and online. The proposed methods are simulated and
compared against the optimum, along with some state-of-the-
art designs, and the results suggest that our methods are much
closer to the optimum than the existing ones, especially when
we have more room to schedule.

I. INTRODUCTION

Coflows are collections of flows that are related semanti-
cally with a common objective [1], which can be observed
in several applications, including Dryad [2], MapReduce [3],
Pig [4], Hive [5], Spark [6], and CIEL [7]. Such collective
objectives differentiate coflow scheduling problems from tra-
ditional flow scheduling problems, which allocate bandwidth
according to per-flow objectives. As pointed out in the liter-
ature [1], [8]–[10], flow-based scheduling policies may not
suffice to achieve good performance for coflows. Therefore,
several methods are proposed to specifically emphasize on
coflow scheduling.

Existing coflow scheduling techniques vary in the ways
of approaching their objectives: Orchestra employs weighted
shuffle scheduling which assigns the rates of flows propor-
tional to their demands [8]; Varys only admits a coflow when
it can be completed before its deadline, and the admitted
coflows are scheduled according to the bottlenecks they
encounter [11]; Baraat processes colfows locally on a first-
come-first-serve basis with a variable level of multiplexing
[9]; Aalo schedules the coflows without prior knowledge by

multi-level priority queues, and the coflow that is least served
gets the highest priority [12]; D-CAS is another priority-
based scheduling strategy, which relies on the senders and the
receivers to negotiate the priority [13]; Stream also leverages
the priority queues at each commodity switch to enforce a
priority-based scheduling, but unlike Aalo, the priority of
a coflow is determined by the receiver [14]; [15] models
the sensitivity of completion time by utility functions and
schedules the coflows to iteratively maximize the minimum
utility; RAPIER is, to the best of our knowledge, the first
work that takes network topology into account, and it tries
to maneuver both routing and scheduling of coflows to
shorten the completion time [10]; OMCoflow manipulates
both routing and scheduling as well. Nevertheless, it adopts
a randomized rounding-based approximation instead of a
deterministic strategy to steer the coflows online [16].

In spite of the methods that have been proposed to schedule
coflows, the lack of a comprehensive framework makes
all previous attempts fall short in answering the following
question: How far away is the proposed heuristic from the
optimal schedule? As a result, the coflow scheduling methods
tend to compare against each other without knowing the
margin to the optimum. We would remark that such question
has also been explored for the standard flow scheduling
problems (cf. [17]), and our work can be deemed a followup
of such optimization-based approach for the coflows. In
this paper, we address the coflow scheduling problem in a
principled approach by first establishing the optimal solution
in an offline setting.

The optimal solution can be established if we have speci-
fied the objective. In this work, we focus on maximizing the
coflow deadline satisfaction (CDS), i.e., how many coflows
can meet their deadlines? The importance of meeting flow
deadlines has been illustrated in the literature [18], [19], and
their arguments apply to coflows as well. For instance, a
coflow originating from an online game match may need to
be processed soon, or the players would be upset if the critical
timing is missing due to the network delay.

Upon establishing the optimal solution, we can then ask
whether the optimal solution can be obtained within reason-
able time and resources. It is shown in the paper that CDS



is not only NP-hard to solve, but also hard to approximate.
As such, we justify the use of heuristics in the literature.
Meanwhile, we derive our heuristics via linear relaxation and
careful rounding techniques that cover the offline and the
online scenarios.

We organize the paper as follows. Some backgrounds of
the coflow scheduling problems are given in the next section.
In Section III, we introduce our model and notations to
formulate CDS as an optimization problem, followed by the
NP-hardness results. Then we propose our relaxation-based
methods to approach CDS in both offline and online settings
in Section IV. Section V compares the proposed algorithms
against some state-of-the-art algorithms through simulations,
and we conclude in Section VI.

II. BACKGROUND

Most network operators handle their traffic according to
some flow-level metrics, such as flow-completion time [20]
or flow deadline satisfaction [18]. In the presence of coflows,
optimizing those metrics may not translate to good coflow
performance. Each coflow usually represents a task, and it is
deemed finished upon the completion of all its flows. As such,
when dealing with coflows, one should focus on coflow-level
metrics rather than the flow-level ones. Two common coflow-
level metrics are coflow completion time (CCT) and coflow
deadline satisfaction (CDS). Under capacity constraints, min-
imizing CCT aims to serve coflows, as a whole or in average,
as fast as possible, while maximizing CDS tries to meet as
many deadlines as possible. These two metrics are correlated
but different, as demonstrated in [18].

Although most of the work in the literature focuses on CCT
minimization, we would argue that maximizing CDS is also
important. Following the arguments in [18], [20], a coflow
is useful when its flows can be done before their deadlines.
For instance, an user-initiated MapReduce job may require
its mappers provide results to the reducers prior to some
deadline. As such, the reducers can complete their work and
respond to the user in time.

In this work, we adopt an optimization-based approach
to schedule coflows to meet their deadlines. Optimization
depends on the underlying model of the network, and there
are three major models: network-oblivious, non-blocking
switch, and network-aware. The network-oblivious model
does not consider the connectivity within a network. Instead,
it focuses on each router and tries to schedule locally. We can
also view it as a decentralized approach. The non-blocking
switch model, however, takes into account the capacity
constraints at the input and the output ports. The assumption
behind the model is that sufficient bisection bandwidth is
given within the network, and thus the bottlenecks are at
the input/output ports. The network-aware model captures
the whole network topology along with the link capacity
constraints. Such a model can reflect possible in-network
congestion, and we leverage it to explore the limit of coflow
scheduling and derive our optimization-based methods in the
following sections.

TABLE I
SUMMARY OF STATE-OF-THE-ART METHODS

Network Model
Network-Oblivious Non-Blocking Switch Network-Aware
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†LPA, ILPA, and OLPA are introduced in Section IV.

On the other hand, scheduling problems can be catego-
rized into different scenarios according to the availability
of the coflow information. We elaborate on three scenarios:
offline, online, and myopic. Under the offline scenario, the
information of all the flows is available for the scheduler
before they are scheduled. Such a case happens when the
coflows can be precisely forecasted, e.g., scheduled tasks. In
general, coflows can show up spontaneously and their per-
flow information is available only upon arrival, which is quite
common when users issue some searching requests. For those
unplanned coflows, we can further group them based on their
information availability. Under the online scenario, all flow
properties, including the deadline and the size, are revealed
when the flow arrives. However, the available information
for the myopic case is more limited: no prior information is
revealed unless it happens. As a result, the deadline and the
size are unknown even upon the arrival of a flow.

We summarize in Table I the state-of-the-art coflow
scheduling methods along with their underlying network
model and information availability. Most work targets myopic
information scenario. Such least information disclosure na-
ture of the myopic scenario confines the analytic conclusions
that can be derived. As a result, all those papers propose
various heuristics to schedule coflows. In this work, we aim to
schedule coflows in a principled way that would be connected
with the optimal solution to CDS. We argue that the coflows
can be intentionally scheduled to satisfy their deadlines only
when the deadlines are known before they occur. Otherwise,
the scheduler might try to approach some proxy metric, such
as CCT minimization, in the hope of reaching a good CDS
solution, which is not necessarily the case [18]. Therefore,
we develop our setup and methods under offline and online
environments.

III. FORMULATION AND ANALYSIS

In this section, we introduce our model to formulate the
coflow deadline satisfaction (CDS) problem, which maxi-
mizes the number of satisfied deadlines by scheduling each
flow through its predetermined path. CDS is then shown NP-
hard, which justifies the use of approximation heuristics that
will be proposed in the following section.



A. Notations

The network is modeled as a directed graph G = (V,E)
where V is the set of nodes and E is the set of directed edges.
Each edge e ∈ E is associated with a capacity ce ≥ 0.
N coflows are generated to go through the network. Each

coflow Fn, n ∈ N , is a collection of correlated flows fj
indexed by j ∈ Jn, and each flow fj is defined by its lifespan
τj , its predetermined acyclic path pj , and its size sj . The
lifespan τj is a time interval [aj , dj ] where aj is the arrival
time and dj is the deadline of the flow fj . The flow is routed
through a determined path pj between some nodes in V . We
say an edge e ∈ pj if the path pj goes through the edge e.

Although our model allows τj to vary among the flows,
in practice, each coflow represents a task and hence the
lifespan is defined on a per-coflow instead of a per-flow basis.
Therefore, we consider τj = τn = [an, dn] for all j ∈ Jn in
the following context, where an and dn are the arrival time
and the deadline of the coflow Fn.

Given the time horizon T > 0, we consider a finite horizon
scheduling problem, i.e., 0 ≤ aj < dj ≤ T for all j ∈ J =⋃
n∈N

Jn.

B. Coflow Deadline Satisfaction (CDS) Problem

A CDS aims to maximize the number of satisfied coflows
within a given horizon T . Within the horizon, CDS finds
a schedule for each flow to go through its predetermined
path. While such a problem can be written as a continuous
time control problem, following Proposition 1 in [17], we
can also write CDS in the form of a mixed integer linear
program (MILP). To do so, we partition [0, T ] into M disjoint
subintervals ∆m such that their endpoints are either aj or dj
for some j ∈ J if not 0 or T . We denote by |∆m| the length
of the interval ∆m.

Let xj(∆m) ≥ 0 denote the sending rate of flow fj
through its path pj during ∆m ⊆ τj . Also, indicator zn ∈
{0, 1} corresponds to whether the coflow Fn can be satisfied
during [0, T ]. Fn is deemed satisfied if all flows fj , j ∈ Jn,
can transmit data sj within its lifespan τj . zn = 1 if Fn is
satisfied, and zn = 0 otherwise.

Using the above notations, we formulate CDS as follows

max
∑
n∈N

zn

s.t.
∑

∆m⊆τn

xj(∆m) |∆m| = sjz
n

∀n ∈ N, j ∈ Jn (1)
zn ∈ {0, 1} ∀n ∈ N (2)∑
j∈J:e∈pj

xj(∆m) ≤ ce ∀e ∈ E,∆m ⊆ [0, T ] (3)

xj(∆m) ≥ 0 ∀j ∈ J,∆m ⊆ τj (4)
xj(∆m) = 0 ∀j ∈ J,∆m 6⊆ τj (5)

Condition (1) is the demand constraint for each flow: each
flow fj sends sj when it is satisfied (zn = 1). zn is
introduced in condition (2). Condition (3) is the capacity

constraint. Conditions (4) and (5) ensure that xj(∆m) can
only be non-zero during its lifespan τj .

Solving the MILP above gives the optimal schedule, which
allows us to compare the performance of different scheduling
algorithms.

C. NP-hardness of CDS

An important question regarding CDS is whether we can
solve CDS efficiently. Proposition 1 shows that CDS is not
only hard to solve but also hard to be approximated.

Proposition 1. CDS is NP-hard and there exists no constant
factor polynomial-time approximation algorithm for CDS
unless P=NP.

Proof. We prove the proposition by reducing the offline rate
control problem in [17] (problem (4), abbreviated as ORC in
the following context) to a CDS. Given an ORC, we construct
the corresponding CDS by mapping each flow in ORC to a
coflow Fn with singleton Jn in CDS. As such, ORC can
be reduced to CDS in polynomial time, which implies the
proposition.

IV. PROPOSED ALGORITHMS

Although Proposition 1 obviates the attempts of search-
ing for an approximation algorithm with fixed ratio perfor-
mance guarantee, a good approximation algorithm is still
essential for the system operators. Below we propose some
optimization-based approximation algorithms, which include
both offline and online versions. Through simulations in
Section V, we demonstrate that our algorithms outperform
existing coflow scheduling heuristics.

A. Linear Programming Approximation (LPA)

The most straightforward scheduling method is the linear
programming approximation (LPA), which relaxes the integer
constraints (2) in CDS and solves the resulting linear program
(LP) as below.

max
∑
n∈N

zn

s.t. 0 ≤ zn ≤ 1 ∀n ∈ N
Conditions (1), (3), (4), and (5).

Upon obtaining the result of the LP, LPA schedules the
flows according to xj(∆m), and the coflows with zn = 1
will be satisfied.

B. Iterative Linear Programming Approximation (ILPA)

LPA satisfies the coflows corresponding to zn = 1. For
those coflows with zn < 1, LPA also allocates bandwidth
to them, which is a waste of bandwidth. To prevent the
drawback, we can omit a coflow whenever it is no longer
possible to be satisfied. As such, the other satisfiable coflows
have more bandwidth to share.

Intuitively, with more bandwidth, we can find new sched-
ules that satisfy at least the same number of coflows, and
hopefully, LPA will discover those schedules after omitting



the unsatisfiable coflows. That leads to the design of inter-
active LPA (ILPA), which iterates through the subintervals
∆m, applies LPA on the rest of the horizon to obtain the
sending rate of the current subinterval xj(∆m), and drops
the unsatisfiable coflows.

However, LPA does not necessarily find a solution satis-
fying more coflows, i.e., with more zn = 1. Instead, it only
reaches a higher objective value, which may consist of more
fractional zn. Therefore, we should adopt a new schedule
only when it could satisfy at least as many coflows as the
old schedule. Also, usually known as the work conservation
criterion, we would prefer the schedule that can be finished
earlier if both old and new schedules satisfy the same number
of coflows. Incorporating the two principles into the design,
we propose ILPA in Algorithm 1.

Algorithm 1: Iterative Linear Programming Approxi-
mation (ILPA)

1: for ∆m from earliest to the last do
2: Remove the coflows that cannot be satisfied anymore.
3: Apply LPA to solve for new

xj(∆m), xj(∆m+1), . . . .
4: Adopt the new LPA schedule if

1) more coflows can be satisfied, or
2) the same number of coflows can be satisfied

strictly earlier.
5: end for

C. Online Linear Programming Approximation (OLPA)

ILPA is an offline algorithm – it requires the coflow
information before starting scheduling. Offline methods work
for scheduled tasks, while coflows can also be spawned
spontaneously in practice. Such a scenario leads to an online
environment, and we can easily handle online scheduling
using ILPA as a building block.

The idea is to refresh the schedule whenever a flow arrives,
expires, or finishes. Those events account for aj and dj in the
offline setting. Similar to the iterative procedure in ILPA, we
propose online LPA (OLPA) in Algorithm 2 that reevaluates
the schedule when those pivot events occur.

Algorithm 2: Online Linear Programming Approxima-
tion (OLPA)

1: for whenever a flow arrives, expires, or finishes do
2: Apply ILPA to schedule the satisfiable coflows.
3: Adopt the new ILPA schedule if

1) more coflows can be satisfied, or
2) the same number of coflows can be satisfied

strictly earlier.
4: end for

V. SIMULATION

We evaluate our proposed algorithms along with some ex-
isting coflow schedulers: Varys [11], Aalo [12], and RAPIER

Fig. 1. We conduct simulations based on the fat-tree topology. Each link
has capacity 10 Gbps, and coflows are formed from randomly generated
leaf-to-leaf flows.

[10]1. By comparing those methods against the optimal
solution to CDS, we would get a sense of how close the
methods are to the optimum.

The evaluations are done through simulations. We conduct
simulations on ns-3. Within the horizon T = 100 ms, we
generate coflows according to a Poisson process with differ-
ent means of inter-arrival time. Each coflow is a MapReduce
job consisting of 1 to 3 mappers and reducers, which are
selected from leaf nodes of the fat-tree network in Fig. 1.
Each reducer requires a data size uniformly distributed over
[1, 100] MB from every mapper through one of the shortest
paths. Such a path is predetermined for each mapper/reducer
pair.

The lifespan of each flow fj is set according to the
tightness parameter q, which is defined as

τj = q ×minimum possible lifespan of the flow,

where the minimum possible lifespan of the flow is estimated
under the assumption that the flow is scheduled through an
empty network. Therefore, q = 1 means that the flow can
only be satisfied if it is assigned full available bandwidth.
Essentially, a larger q creates more room for scheduling.

We express the simulation results in satisfaction ratio. The
satisfaction ratio of a schedule is given by

satisfaction ratio =
number of satisfied coflows

total number of coflows
.

It is straightforward to see that a larger satisfaction ratio
implies more satisfied coflows.

The simulation results are in Fig. 2. We consider two
different tightness parameters q = 1 and q = 2 under two
different inter-arrival time 3 ms and 5 ms. As expected,
smaller tightness parameter leads to smaller satisfaction ratio.
On the other hand, shorter inter-arrival time implies a more
congested network. As a result, fewer coflows can be satisfied
and the satisfaction ratio is smaller. Within all the simulation
scenarios, ILPA and OLPA outperform the existing schedul-
ing methods as they have more deadline information and
better network perception. RAPIER works better than Varys
and Aalo when q is small, but Aalo can satisfy more coflows
when there is more room for scheduling (q = 2).

1OMCoflow [16] is not chosen as it involves randomization.
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Fig. 2. The 1st-5th-50th-95th-99th percentiles under various q and mean of inter-arrival time. Our proposed methods (LPA, ILPA, and OLPA) outperform
the existing methods Varys, Aalo, and RAPIER, and their performance is close to the optimal solution.

VI. CONCLUSION

This paper examines the coflow deadline satisfaction
(CDS) problem, which schedules the coflows through prede-
termined paths to maximize the number of satisfied coflow
deadlines. We view CDS from the angle of optimization and
show that CDS is NP-hard. Moreover, approximating CDS
with a fixed approximation ratio is also intractable (unless
P=NP), which justifies the application of heuristics in the
literature. Through linear relaxation and rounding techniques,
we propose LPA, ILPA, and OLPA that can schedule coflows
under offline and online scenarios. Our simulations demon-
strate that the proposed algorithms perform better than the
existing methods and close to the optimum. Therefore, our
results can serve as the benchmarks for the coflow deadline
scheduling problems.
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